4. Find Exami, May 5,2022 (Thur.) 12:30-2:30PM

\n4. An email will be sent about the detailed arrangements.

\n4.
$$
\frac{1}{2}
$$
 (Iniform" Continuity)

\nRecall: Let $f: A \rightarrow \mathbb{R}$.

\n6. $\frac{1}{2}$ (instituting the equation of the formula)

\n7. $\frac{1}{2}$ (instituting the equation of the equation of the equation)

\n8. $\frac{1}{2}$ (1) $\frac{1$

Example $2: f: (0, \infty) \rightarrow \mathbb{R}$

 $f(x) := x$ cts on $(0, \infty)$

For the SAME 650 , we can choose ONE S so st it works for all the points C . ie the choice of 8 does not depend on C (but still depends on E) Uniformly continuous

 Def ": $f: A \rightarrow R$ is uniformly continuous (on A) does NOT depend on u.v \iff \forall ϵ >0, \exists ϵ = δ (2) > 0 st $|f(u) - f(v)| < \epsilon$ whenever $u \cdot v \in A$ and $|u - v| < \frac{c}{2}$ Remark: 1) Fix $v = c \in A$. then dearly u_0 and u_1 and u_2 and u_3 and u_4 on A c.f. Example I 2) Uniform continuity is a "slobal" concept. i.e. it cloes NOT make sense to talk about uniform continuity at one point. $Q:$ How to decide whether $f: A \rightarrow R$ is uniformly cts Of course, if f is not ets everywhere on A. then f CANNOT be uniformly cts.

Prop: f: A -> R is NOT uniformly ats \iff $\exists \xi_0$ > 0 st $\forall \xi$ > 0, $\exists u_{\xi}$, $v_{\xi} \in A$ st $|u_{s}-v_{s}| < \delta$ But $|f(u_{s})-f(v_{s})| \ge \epsilon_{0}$ \iff = $\&$ > 0 and seq (un). (vn) in A st. $|u_{n}-v_{n}| < \frac{1}{n}$ But $|f(u_{n})-f(v_{n})| \ge \epsilon_{0}$ $\forall n \in \mathbb{N}$ Print: Taking regation of def? A choose $S = \frac{1}{n}$. Remark: This Proposition is useful in proving a function f: A -> R is NOT uniformly cts. Example 1 (again): The function $f(x) = \frac{1}{x}$ is NOT uniformly ets on (0,00). Proof: Teke $\Sigma_0 = \frac{1}{2}$ and $u_n := \frac{1}{n}$. $v_n := \frac{1}{n+1}$. Note $|u_{n}-v_{n}| = |\frac{1}{n} - \frac{1}{n+1}| = \frac{1}{n(n+1)} < \frac{1}{n}$ βuT $|f(u_{w})-f(v_{n})| = |n - (n+1)| = 1 > \epsilon_{0} = \frac{1}{2}$ By Phyp. we are done. $\overline{}$

Exercise: Show that
$$
f(x) = \frac{1}{x}
$$
 is uniformly $-x$ and $f(x) = \frac{1}{x}$ is uniformly $-x$.

\nLet $f(x) = \frac{1}{x}$ is uniformly $-x$.

\nLet $f(x) = \frac{1}{x}$ is uniformly $-x$.

\nLet $f(x) = \frac{1}{x}$ is not always $-x$.

\nLet $f(x) = \frac{1}{x}$ is not always $-x$.

\nLet $f(x) = \frac{1}{x}$ is not explicitly $-x$.

\nTherefore, $f(x) = \frac{1}{x}$ is not always $-x$.

\nLet $f(x) = \frac{1}{x}$ is not always $-x$.

\nLet $f(x) = \frac{1}{x}$ is not always $-x$.

\nTherefore, $f(x) = \frac{1}{x}$ is not always $-x$.

\nTherefore, $f(x) = \frac{1}{x}$ is not always $-x$.

\nTherefore, $f(x) = \frac{1}{x}$ is not always $-x$.

\nTherefore, $f(x) = \frac{1}{x}$ is not always $-x$.

\nTherefore, $f(x) = \frac{1}{x}$ is not always $-x$.

\nTherefore, $f(x) = \frac{1}{x}$ is not always $-x$.

\nTherefore, $f(x) = \frac{1}{x}$ is not always $-x$.

\nTherefore, $f(x) = \frac{1}{x}$ is not always $-x$.

\nTherefore, $f(x) = \frac{1}{x}$ is not always $-x$.

\nTherefore, $f(x) = \frac{1}{x$

By previous Prop. then
\n
$$
\exists \xi_0 > 0 \text{ and } \text{seg. } (U_n) \text{, } (V_n) \text{ in } [a, b]
$$
\n
$$
\exists \xi_0 > 0 \text{ and } \text{seg. } (U_n) \text{, } (V_n) \text{ in } [a, b]
$$
\n
$$
\exists \xi_0 \text{ so } \text{and } \text{seg. } \text{[f(u_n) - f(u_n)] } \text{]}
$$
\n
$$
\exists \xi_0 \text{ by } \text{[g(u_n) - g(u_n)] } \text{]}
$$
\n
$$
\exists \xi_0 \text{ by } \text{[g(u_n) - g(u_n)] } \text{ [g(u_n) - g(u_n)] } \text{ [h(u_n) - g(u_n)] } \text{ [h(u_n
$$

Q: Given a cts f. (a,b)
$$
\rightarrow
$$
 R, when can
we extend it controlling to a function
 $\overline{f}: [a,b] \rightarrow \mathbb{R}$?

Continuous Extension Thm Let $f:(a,b)\rightarrow \mathbb{R}$ be a cts function. If f is uniformly cts on (a, b) , ... (x) then \exists an "extension" \overline{f} : [a, b] \rightarrow \mathbb{R} st (i) $\overline{f}(x) = f(x)$ $\forall x \in (a, b)$ (i) \overline{f} is cts on [a,b] $Remark: (1)$ \overline{f} is uniformly cts on [a.b] by Uniform Continuity Thin. (3) is necessary) (2) Such an extension \overline{f} is unique. (we will see why in the proof.) We will the following result in the proof of Continuous Extension Thin.

Prop: Let f: A -> R be a uniformly cts function. Suppose (Xn) is a Canchy seg. in A. THEN. (f(In)) must also be a Canchyseg. In other words, Canchy seq. are "preserved" by uniformly cts functions. $\frac{C_{\text{enody}}\text{sg}}{x_{\text{m}}}$ A $\frac{f}{\text{cm}f}$ Canchy! $f(x_n)$ Proof: Let ϵ > 0. By def? of unif. continuity. 50 oc(2) 3 = 8 E (#) $|f(u)-f(v)| < \epsilon$, $\forall u,v \in A$, $|u-v| < \delta$ Suppose (2n) is a Canchy seq in A. By def2 of Canchy seg., for the 800 above, $J H = H(S) \in I N$ st. $\nabla m.n.$ λ \vdash $|x_m - x_n| < \xi$

 By (#). $|f(x_m) - f(x_n)| < \epsilon$ $\forall m,n \geq H$ ie. (f(xn)) is Canchy. \bullet