
 

MATH 2050C Lecture 22 Apr 72

afinal Exam May 5,2022 Thur 12 30 2 30PM

An email will be sent about the detailed arrangements

Uniform Continuity

Recall Let f A IR

f is cts at C C A implicitlydependon f
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Remark Generally speaking the choice of 8

depends on both E and C



Example 1 f co co SR
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For the SAME E O When C o then we need
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Example 2 f Coro IR
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For the SAME E so we can choose ONE

8 so s t H works for all the points C

ie the choice of 8 does not depend
on C but still depends on E

Uniformly continuous



Def't e f A B is uniformly continuous ConA
doesNOTdepend on u u
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Remark 1 Fix c E A then dearly

uniformly Cts cts on A
on A

c f Example I

2 Uniform continuity is a global concept

i e it does Not make sense to talk about

uniform continuity at one point

Q How to decide whether f s A IR is

uniformly cts

Of course if f is HIS Cts everywhere
on A

then f CANNI be uniformly
Cts



Prop f A IR is NOT uniformly as
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Proof Taking negation of
deft d choose Seth

D

Reinas This proposition is useful in proving

a function f A B is NII uniformly Cts

Example 1 again The function fix

is NIT uniformly
cts on Co N

Proofs Take Eo Iz and Un th Un

Nde I un un l Int I nine I

BET If cans fans I I n cut I Eo L

By Pnp we are done o



Exercise Show that fix is uniformly

cts on CA for any fixed a O

Q In terms of uniform continuity can we

say more when f A SR is defined on

an interval A

A Yes we will talk about two results

Uniform Continuity Thin

Continuous Extension Thus

ReI uniformly Cts cts on A
on A

c f Example I

closed bold
Uniform Continuity Then f interval

If f Ca b R is ots on Ca b

then f is uniformly cts on Ca b

Proof We shall argue by contradiction

Suppose f is Not uniformly cts on Ca b



By previous Pnp then
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By Bolzano Weierstrass Them 7 sub seq
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Note that f k e 1N we have
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Now by construction we have f k EIN
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Taking K soo and using the continuity of f Cat U
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Contradiction arises
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Given a Cts f a b IR when can

we extend it continuously to a function

Tais R

ie f CX fix X C a b

Pictures
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Continuous Extension Then

Let f Ca b SR be a cts function

If f is uniformly cts on Ca b a CA

then an extension F a b B

St Ci f X fix t X E ca b

ii f is cts on Ca b

Remark 1 f is uniformly cts on Ca b

by Uniform Continuity Thin

ex is necessary

2 Such an extension f is unique

we will see why in the proof

we will the following result in the proof of

Continuous Extension Thin



Prop Let f A IR be a uniformly Cts

function Suppose Xn is a Cauchy seq in A

THEN fan must also be a Candy seq

In other words Cauchy seq are preserved

by uniformly Cts functions

f CauchyCandyseq A
d unit

Xu cts f Xn

Proof Let E so By deft of unif continuity
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C I
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Suppose Gen is a Cauchy seq in A

By defI of Cauchy Seg for the 8 so above
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By C If Cm f xn s E f men H

ie fan is Cauchy
D


